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We study the strong coupling �SC� limit of the anisotropic Kardar-Parisi-Zhang �KPZ� model. A systematic
mapping of the continuum model to its lattice equivalent shows that in the SC limit, anisotropic perturbations
destroy all spatial correlations but retain a temporal scaling which shows a remarkable crossover along one of
the two spatial directions, the choice of direction depending on the relative strength of anisotropicity. The
results agree with exact numerics and are expected to settle the long-standing SC problem of a KPZ model in
the infinite range limit.
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A topic of much interest in the field of nonequilibrium
statistical physics in the past few years has been the ubiqui-
tous Kardar-Parisi-Zhang �KPZ� model �1–3�. Although
many of the theoretical issues concerning the weak-coupling
�WC� regime of the model, the regime amenable to pertur-
bation theories, have generally been well studied �2–7�, the
same cannot be said about the strong-coupling �SC� regime.
Barring occasional studies �8–13�, this regime has largely
remained unexplored mainly due to a lack of theoretical tools
in dealing with such a nonperturbative system, as well as due
to the inherent complex character of the problem. Perturba-
tive field theories �4,9,10� could probe the system close to
the SC-WC phase boundary but not the SC regime itself.

Three open problems concerning the SC regime are well
known: �1� What is the nature of the universality class in this
regime, that is, if one exists? �2� What is the value of the
upper critical dimension dc beyond which the dynamic expo-
nent z=2 and the roughness exponent �=0? �3� What is the
effect of anisotropic perturbations on the SC regime as well
as on dc? Starting with the latter, the role of anisotropy is a
well-studied problem but mostly in the WC regime and that
too with contradictory outcomes, e.g., Wolf �14� claims the
triviality of such fluctuations whereas Täuber-Frey �9�, Tang-
Kardar-Dhar �15�, Mukherji-Bhattacharjee �16�, and Hwa
�17� claim quite the opposite. The issue of the upper critical
dimension has also remained a highly debated issue all
along. Claims toward its existence �11,19–22� have been re-
futed by equally powerful arbitrations toward the opposite
�9,10,13,18�. The question concerning the universality class
of KPZ-type models in the SC regime has remained largely
unexplored though �exceptions are �11,13,18��.

In this article, we study the anisotropic KPZ model �2� to
address all three contentious issues. The theoretical approach
is a generalization of the “infinite range mean-field �IRMF�”
technique popularized by Marsili and Bray �8� for an isotro-
pic KPZ model. The IRMF leads to a driect mapping of the
continuum model to its discretized lattice equivalent �23�.
This has the advantage of a nonperturbative approach to the
problem which could be profitably used to study the SC
phase. The analytical results are later complemented by a
direct numerical simulation of the spatially anisotropic equa-

tions of motion. With respect to the spatial directions x and y,
the anisotropic KPZ model can be represented as

�h

�t
�x,y,t� = ��

i

x,y

�i
2h + �

i

x,y

�i��ih�2 + ��x,y,t� , �1�

where terms have their usual meanings and the noise
��x ,y , t� is white with strength D. Our interest is in the d
�dc, �i��i

critical regime �i=x ,y�. Resorting to IRMF, we
now map the continuum model defined in Eq. �1� to a square
lattice model considering only nearest-neighbor �nn� interac-
tions. For a �2+1�-dimensional Euclidean space, this means
the number N of the nn sites is equal to 4 �=2d�. If ht

�,�

�h�x ,y , t� represents the height at the lattice point �� ,��, an
ensemble averaging along x �i.e., along �� gives �ht����x

= 1
N��=1

N h�,��t�, while that along y �i.e., along �� gives
�ht����y = 1

N��=1
N h�,��t�. We now introduce the local height

fluctuation operators, respectively, along x and y at �� ,��:
	x�t�=h�,��t�− �ht����x and 	y�t�=h�,��t�− �ht����y. Using a
Taylor expansion up to the discretized second derivative, the
h description can now be mapped over to the 	i-description:
�x

2ht���=−	x�t�, �y
2ht���=−	y�t� and 2	�xht	2= �	x

2����t+	x
2,

2	�yht	2= �	y
2����t+	y

2 �8�. Further symmetry properties of
�	x ,	y�, e.g., �	x����x= �	y����y =0 and �	x����y =−�	y����x,
etc. assume nontrivial significance in defining the structure
of the potential function 
 �Eq. �4��. As already shown in
�8,24,25�, nonlinear equations of motion of the type do not
have a stationary state: 	i→� �i=x ,y� as t→�. To avoid
such inconsistencies, one can resort to a regularization
scheme involving the introduction of dimensionally “irrel-
evant operators” in the free energy of the model as in �8�,
thereby generating a modified equation of motion
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�2�

It is easy to see that the surface tension and “irrelevant”
terms together contribute to renormalizing �, effectively
amounting to a smoothening of the growing surfaces. In the
infinite-range limit, this allows the h↔	 mapping to define a
coupled set in �	x ,	y�:*A.Chattopadhyay@ed.ac.uk
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�t	i = i���t� − 
�	x,	y,��� + �i �i = x,y� , �3�

where x=1 and y = 1
� . The white noises ��x ,�y� are related

to � through a renormalized noise strength DN−1/2 while the
potential
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and the system parameters are as follows:
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the coupled equations in Eq. �3� can now be represented in a
Fokker-Planck module:

�t	i = i
�Vtot

�	i
+ �i �i = x,y� �7�

subject to the condition

�2��1 + sy� − 2gy	y + 3	y
2� = �1 + sx� − 2gx	x + 3	x

2. �8�

sx
�, sy

�, and �� can be evaluated by studying the stability
properties of Vtot using the Hessian
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description, in the low noise limit. The resultant analyses
suggest optima for the system at �	x

± ,	y
±� where 	i

±

=
gi±
gi

2−4�1+si�
2 �i=x ,y�. 	i

± represents minima if ��= gx

gy
��1

and vice versa. As we will shortly see, this leads to a cross-
over along y �for ��1� or along x ���1�, a trait not to be
found in the isotropic model.

In the limit D→0+, the equilibrium potential is given by
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+� leading to the stationary state probability
distribution function
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where � ,� are probabilities of transitions between “pure”
��x

± ,�y
±� and “mixed” ��x

± ,�y
�� states, respectively. To-

gether with identities such as �	i��=0, this gives us si
�=

−	i
+	i

− �i=x ,y� and ��=−
gx

6 sx
�−�

gy

6 sy
�. The key signature

of anisotropicity is, however, encapsulated in the nonzero
value of the cross-coupling correlator sxy. It ensures that fluc-
tuations along x can influence those along y, thereby leading
to sxy

�=− 1
4 �	x

++	x
−��	y

++	y
−�, or as in the low noise limit:

sxy
��gx ,gy ,D→0+�=− 1

9gxgy.
We now address the question of spatiotemporal scaling

�or the lack of it� by studying the two-point structure func-
tion ��h− �h���2= �	i

2� �i=x ,y� away from the stationary
state. For the temporal probability distribution, we propose a
structure similar to P��	x ,	y ;��, though now with time-
dependent transition probabilities ��t ,�t� defined against
time-dependent states �	x,t,	y,t�:
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. As opposed to a single parameter description for the isotro-
pic case, anisotropy involves two parameters ���0� imply-
ing nonzero transition probabilities. This added complication
renders an asymmetric �	x,t↔	y,t� structural form resulting
in

�t =
F�	x,t

±,	y,t
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2N�	x,t
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where F, H, and N are functions of 	i
±�t�. As in the t→�

case, we find that sx,t=−	x,t
+	x,t

− and sy,t=−	y,t
+	y,t

−. These
relations leave us with only two independent variables deter-
mining the nonstationary state dynamics as follows:

d�t

dt
= exp�−
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+,	y,t
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D

 , �10a�
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 . �10b�
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Equations �10a� and �10b� are of critical importance in
that they define the probabilities of transition between two
“pure” minima and two “mixed” states, respectively.

We numerically solved the coupled set of Eqs. �10a� and
�10b� for the parameter values �=10, D=0.5 �the conclu-
sions remain unchanged over a considerable range of param-
eters� and arrived at a remarkable result as in Fig. 1: the ln �t
vs t plot shows a crossover from the temporal exponent �1
�0.5 to �2�1 /3, whereas the ln �t versus t graph shows a
steady scaling �1�0.5. Such a crossover is unknown in the
weak-coupling regime ��=0.5� �2,26�.

In an attempt to understand the true implication of this
scaling structure as well as to check the consistency of our
results, we numerically integrated Eqs. �3� up to 106 time
steps for ��D and found this sensational scaling tenable in
the strong-coupling regime over six orders of magnitude
�Fig. 2�. The plot clearly confirms the crossover scaling be-
havior obtained from the nonperturbative theory �Fig. 1�. For
the special case of gx=gy ��=1�, we recover the Marsili-Bray
result �8�: st= �ln t�1/3.

The spatial correlation function, on the other hand, shows
an exponential decay as evident from Fig. 3 that confirms the
absence of any spatial scaling in the anisotropic SC regime.
These two figures, Fig. 2 and Fig. 3 combined, reveal a star-
tling fact about the strong coupling regime—although the SC
regime exhibits a most interesting temporal scaling behavior,
there is no spatial scaling. In other words, there is an absence
of an underlying renormalization group fixed point in the SC
regime so far as spatiotemporal scaling is concerned.

The overall absence of a “true scaling” in the strong cou-
pling KPZ model is a singularly striking result and contra-
dicts previous predictions �8,9�. We attribute such a differ-
ence in conclusion to the nonexactness that accompanies a
perturbative evaluation in a nonperturbative regime �9� as
opposed to our case where the entire analysis relies on the
stability behaviors of a nonperturbative potential function
around the points of stability, generally the attractors. The
spatiotemporal spectrum in the SC regime further allows us

to make a prediction concerning the upper critical dimension
dc below which WC scaling holds �and above which �=0�. A
lack of spatial scaling, as evident from Fig. 3, simply renders
this number as infinite and can be directly related to the fact
that both ��t� and ��t� are always greater than zero. It might
be noted that for an isotropic system where �=0, the argu-
ment still holds, giving dc=�. The result agrees with earlier
predictions �3,9,14� although, admittedly, it disagrees with
many others �11,19–22�. Our numerical studies of other non-
linear models in the SC regime reconfirm the lack of spatial
scaling and an asymmetry-dependent transition in temporal
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FIG. 1. �Color online� Variations of �t and �t with time t on a
log-log scale. The former shows a crossover behavior while the
latter depicts a steady scaling. The result is typical of the strong
coupling regime.

0000 0.25 0.5 0.750.25 0.5 0.750.25 0.5 0.750.25 0.5 0.75 1111 1.25 1.5 1.751.25 1.5 1.751.25 1.5 1.751.25 1.5 1.75 2222 2.252.252.252.25

ln tln tln tln t

-0.2-0.2-0.2-0.2

-0.1-0.1-0.1-0.1

0000

0.10.10.10.1

0.20.20.20.2

0.30.30.30.3

0.40.40.40.4

0.50.50.50.5

0.60.60.60.6

0.70.70.70.7

0.80.80.80.8

0.90.90.90.9

1111

ln
s

ln
s

ln
s

ln
s

yyyy
(t
)

(t
)

(t
)

(t
)

ζζζζ1111=0.5=0.5=0.5=0.5

ζζζζ2222=0.35=0.35=0.35=0.35

0000 0.25 0.5 0.750.25 0.5 0.750.25 0.5 0.750.25 0.5 0.75 1111 1.25 1.5 1.751.25 1.5 1.751.25 1.5 1.751.25 1.5 1.75 2222 2.252.252.252.25
-1.5-1.5-1.5-1.5

-1.25-1.25-1.25-1.25

-1-1-1-1

-0.75-0.75-0.75-0.75

-0.5-0.5-0.5-0.5

-0.25-0.25-0.25-0.25

ln tln tln tln t

ζζζζ
1111
=0.5=0.5=0.5=0.5

ln
s

ln
s

ln
s

ln
s
xxxx

(t
)

(t
)

(t
)

(t
)

FIG. 2. �Color online� Variations of ln sx�t� and ln sy�t� against
ln t obtained by numerically integrating Eqs. �3� and �4� for �
=10,D=0.5. The ln sy�t� graph shows a crossover scaling akin to
the ln �t graph in Fig. 1, thereby reconfirming our theoretical result.
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FIG. 3. �Color online� Spatial correlation function as obtained
from exact simulation data �dotted line� for �=10, D=0.5. The solid
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decay predicting a lack of spatial scaling in the strong-coupling
regime.
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scaling. One must be a bit cautious about the approximations
though. A nearest-neighbor interaction in mapping the con-
tinuum model to its discrete equivalent and overall dynamic
scaling, our basic assumptions, could be quantitatively non-
trivial �amounting to modified values of exponents�, al-
though the qualitative outcomes should still remain unaf-
fected. A problem that is worth pursuing is a study of the
behaviors of similar strongly coupled models in the presence

of a multiplicative noise, especially for a quenched system
�SC equivalent of �27��.
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